

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 6790-6793

L-Proline-catalyzed intramolecular cyclization of 5-hydroxypentene to β-halogenated tetrahydrofuran

Adam Shih-Yuan Lee,^{a,b,*} Kuo-Wei Tsao,^a Yu-Ting Chang^a and Shu-Fang Chu^a

^aDepartment of Chemistry, Tamkang University, Tamsui, Taipei 251, Taiwan ^bGraduate Institute of Life Sciences, Tamkang University, Tamsui, Taipei 251, Taiwan

> Received 29 May 2007; revised 11 July 2007; accepted 12 July 2007 Available online 17 July 2007

Abstract—A series of β -bromo- and β -iodotetrahydrofurans was synthesized from the reaction mixture of 5-hydroxypentene, L-proline, NBS (or I₂) in THF at 0 °C for 10 min. This L-proline-catalyzed intramolecular cyclization provides a simple and efficient method for the preparation of β -halogenated tetrahydrofuran. © 2007 Elsevier Ltd. All rights reserved.

The tetrahydrofuran ring is a very important structural moiety, which is present in a large variety of natural products such as polyether antibiotics.¹⁻⁴ The intramolecular alkoxylation reaction, the addition of alcohol onto carbo-carbon multiple bonds, provides an efficient and direct access to tetrahydrofuran functionality.⁵ 5-Hydroxypentenes have received much more attention as synthetic intermediates for synthesis of this class of heterocycles.^{6–16} The intramolecular cyclization (5-exotrig) of 5-hydroxypentene to tetrahydrofuran ring has been reported and achieved by activation of alkene from halogen^{17–20} or Lewis acid,^{21,22} epoxidation of alkene followed by intramolecular C–O bond formation,^{23–26} and palladium-catalyzed cyclization.^{27–29} Halogenated tetrahydrofurans, especially derivatives with an exocyclic bromo- or iodo- functionality located in the β -position to the ring oxygen atom, have become attractive synthesis targets because of the discovery of β-brominated tetrahydrofurans, which were occurred widely as secondary metabolites in the marine environment.³⁰ The most simple and direct procedure for the synthesis of β -halogenated tetrahydrofurans is the reaction of 5hydroxypentene with molecular halogen (Br_2, I_2) or halogenating reagent (NBS, IBr, ICl) via intramolecular cyclization (5-exo-trig). Herewith, we wish to report a simple and highly efficient method for synthesis of β bromo and β-iodotetrahydrofuranyl compounds from 5-hydroxypentenes (Scheme 1).

Scheme 1.

5-Hydroxypentenes were prepared by the reaction of 4bromobutene with aldehydes under a sonochemical Barbier reaction condition.³¹ Thus, we firstly investigated the bromocyclization of 1-phenylpentenol with NBS (*N*-bromosuccinimide)²⁰ at room temperature and β bromo-phenyltetrahydrofuran was produced in 60% yield after 3 days. The small amount of HBr added to NBS liberates more Br₂ molecule³² and this reaction condition was investigated for bromocyclization of 1phenylpentenol. The trace amount of concd HBr (20 µL/equiv) was added to a reaction mixture of 1-phenylpentenol and NBS in CH₂Cl₂ at 0 °C and 96% yield of β -bromo-phenyltetrahydrofuran was obtained after 30 min (Scheme 2). The catalytic amount of HBr promoted the formation yield of β -bromotetrahydrofuran and the reaction time decreased dramatically.

A series of 5-hydroxypentenes was investigated under this HBr-catalyzed bromocyclization reaction condition

^{*} Corresponding author. Tel.: +886 2 2621 5656x2543; fax: +886 2 26222 3830; e-mail: adamlee@mail.tku.edu.tw

^{0040-4039/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.07.069

Table 1. HBr-catalyzed bromocyclization of 5-hydroxypentene

^a The yields were determined after chromatographic purifications. ^b The cis/trans ratio is determined by ¹H NMR spectral analysis.

and the results are shown in Table 1. The typical procedure for synthesis of a β -bromotetrahydrofuran is as follows: To a reaction mixture of 5-hydroxypentene (1.0 mmol) and NBS (1.1 mmol) in CH₂Cl₂ at 0 °C was added concentrated HBr (20 µL). After the reaction mixture was stirred at 0 °C for 30 min, water (10 mL) was added and extracted with ether (3 × 20 mL). The combined organic layer was washed with Brine (30 mL), dried with MgSO₄, filtered, and then the organic solvent was removed under reduced pressure. Further purification was achieved on a flash chromatograph with silica gel and ethyl acetate/hexanes.

Good to excellent yields of the investigated compounds in Table 1 were afforded under this HBr-catalyzed reaction condition. The diastereoselectivity (cis/trans) ratios were also determined by ¹H NMR spectral analysis. The coupling constant values of 2- and 5-position protons were measured and as reference for the determination of cis/trans ratio.

The addition of HBr catalyzed the bromocyclization of 5-hydroxypentene. Thus, we think the addition of a base may accelerate the cyclization step by deprotonation of alcohol which becomes a better nucleophile to the acti-

Scheme 3.

vated carbon–carbon double bond. The stoichiometric amount of a base such as NaHCO₃ was added to a mixture of 5-hydroxypentene and NBS and it was stirred at 0 °C for 30 min (Scheme 3). The introduction of a base improves the reaction rate and yield which presents the same effect as the addition of HBr. Thus, we think the introduction of an amino acid such as proline^{33–36} may exhibit the similar improvement for this intramolecular cyclization. To a reaction mixture of 1-phenylpentenol and NBS in THF at 0 °C was added natural proline. The reaction mixture was stirred at 0 °C for 10 min and 99% yield of β -bromo-phenyltetrahydrofuran was obtained. A catalytic amount of L-proline accelerated this bromocyclization of 5-hydroxypentene compound and a high formation yield was also achieved.

A series of 5-hydroxypentenes was investigated under this proline-catalyzed bromocyclization and the results are shown in Table 2. The typical procedure for synthesis of a β -bromotetrahydrofuran in the presence of proline as catalyst is as follows: To a reaction mixture of 5hydroxypentene (1.0 mmol) and NBS (1.1 mmol) in THF at 0 °C was added L-proline (100 μ L, 2 M aqueous solution). After the reaction mixture was stirred at 0 °C for 10 min, water (10 mL) was added, and extracted with ether (3 × 20 mL). The combined organic layer was washed with Brine (30 mL), dried with MgSO₄, filtered, and then the organic solvent was removed under reduced pressure. Further purification was achieved on a flash chromatograph with silica gel and ethyl acetate/ hexanes.

The yields and stereoselectivities (cis/trans) of β -bromotetrahydrofuranyl compounds, which were obtained from the L-proline-catalyzed reaction conditions, usually are better than the product obtained by HBr-catalyzed cyclization reaction condition. Alkyl-substituted 5-hydroxypentenes afford much higher yields of tetrahydrofuranyl compounds under proline-catalyzed cyclization reaction condition. Heterocyclic tetrahydrofuranyl compounds were easily synthesized under the reaction conditions.

 β -Iodotetrahydrofuranyl compounds were typically prepared from the intramolecular cyclization of 5-hydroxypentenes by using I₂ as iodinating reagent. Thus, we investigated the intramolecular cyclization of 1-phenylpentenol with iodine and the expected product was not produced after 24 h (Scheme 4). Another iodinating reagent IBr was also investigated and generated 68% yield of β -iodotetrahydrofuran after 2 h stirring at 0 °C. The β -iodophenyltetrahydrofuran was obtained with a 54%

 Table 2. Proline-catalyzed bromocyclization of 5-hydroxypentene

Entry	R	Product	Yield ^a (cis/trans) ^b		
1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Br	98% (24:76)		
2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∽~~~Br	94% (30:70)		
3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	O Br	94% (6:94)		
4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	O Br	99% (35:65)		
5	F	F O Br	99% (28:72)		
6	Br	Br	95% (27:73)		
7	H ₃ CO	H ₃ CO Br	98% (24:76)		
8	S	S O Br	94% (30:70)		
9	N 25	C Br N ■	57% (28:72)		
10		o o o Br	86% (26:74)		
11		Br	99% (27:73)		
12	N Ts	O Br	95% (31:69)		
The yields were determined after chromatographic purifications					

^a The yields were determined after chromatographic purifications. ^b The cis/trans ratio is determined by ¹H NMR analysis.

when a base KI was introduced into the reaction mixture. The yield can be increased to 91% when an amount of I_2 and KI were introduced to 3 and 1.5 equiv. An excellent yield (99%) was achieved when a catalytic amount of L-proline was introduced to the iodocyclization reaction condition.

A series of 5-hydroxypentenes was investigated under this proline-catalyzed iodocyclization reaction condition and the results are shown in Table 3. The typical procedure for synthesis of a β -iodonated tetrahydrofuran is as follows: To a reaction mixture of 5-hydroxypentene

Table 3.	Proline-catalyzed	iodocyclization	of 5-hydroxypentene

Table 3. Proline-catalyzed iodocyclization of 5-hydroxypentene						
Entry	R	Product	Yield ^a (cis/trans) ^b			
1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~\I	97% (30:70)			
2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		88% (34:66)			
3		O I	96% (25:75)			
4	C Z		99% (30:70)			
5	F	F	93% (23:77)			
6	Br	Br	99% (24:76)			
7	н₃со	H ₃ CO	92% (51:49)			
8	S - A	S O O	76% (36:64)			
9			61% (39:61)			
10			88% (45:55)			
11	24		98% (22:78)			
12	N Ts		90% (44:56)			

^a The yields were determined after chromatographic purifications. ^b The cis/trans ratio is determined by ¹H NMR spectral analysis.

(1.0 mmol) and I₂ (3.0 mmol) in THF at 0 °C was added L-proline (0.2 mmol) and the reaction mixture was stirred at 0 °C for 10 min. The mixture was quenched with saturated Na₂S₂O₇ (10 mL), extracted with ether (20 mL × 3). The organic layer was washed with brine (30 mL), dried with MgSO₄, and then removed under reduced pressure. Further purification was achieved on a flash chromatograph with silica gel and ethyl acetate/ hexanes.

The experimental results showed that the formation yield of β -iodotetrahydrofuran was nearly as high as the yield of β -bromotetrahydrofuran obtained under the reaction condition. The stereoselectivity (cis/trans) of proline-catalyzed bromocyclization reaction generally is better than its corresponding iodocyclization reaction.

In conclusion, this natural proline-catalyzed reaction provides a simple and highly efficient method for the preparation of β -halogenated (β -bromo or β -iodo) tetrahydrofuranyl compound from 5-hydroxypentene via an intramolecular cyclization (5-*exo*-trig) under either acidic or basic reaction condition.

Acknowledgement

We thank the National Science Council in Taiwan and Tamkang University for financial support.

References and notes

- 1. Cradillo, G.; Orena, M. Tetrahedron 1990, 46, 3321.
- 2. Boivin, T. L. B. Tetrahedron 1987, 43, 3309.
- 3. Kotsubi, H. Synlett 1992, 97.
- 4. Bartlett, P. A. Tetrahedron 1980, 36, 2.
- Tani, K.; Katoaka, Y. In *Catalytic Heterofunctionalization*; Togni, A., Grutzmacher, H., Eds.; Wiley-VCH: Weinheim, 2001; p 171.
- Ireland, R. E.; Armstrong, J. D.; Lebreton, J.; Meissener, R. S.; Rizzacasa, M. A. J. Am. Chem. Soc. 1993, 115, 7152.
- Evans, D. A.; Ratz, A. M.; Huff, B. E.; Sheppard, G. S. J. Am. Chem. Soc. 1995, 117, 3448.
- 8. Che, C.-M.; Lau, K.; Poon, C.-K. J. Am. Chem. Soc. 1990, 112, 5176.
- Jacobsen, E. N.; Schaus, S. E.; Branalt, J. J. Org. Chem. 1998, 63, 4876.
- Keinan, E.; Neogi, P.; Doundoulakis, T.; Yazbak, A.; Sinha, S. C.; Sinha, S. C. J. Am. Chem. Soc. 1998, 120, 11279.
- 11. Marshall, J. A.; Hinkle, K. W. J. Org. Chem. 1997, 62, 5989.
- Hoye, T. R.; Hanson, P. R.; Kovelesky, A. C.; Ocain, T. D.; Zhuang, Z. J. Am. Chem. Soc. 1991, 113, 9369.
- 13. Figadere, B. Acc. Chem. Res. 1995, 28, 359
- 14. Marshall, J. A.; Jiang, H. J. Org. Chem. 1998, 63, 7066.
- 15. Jiang, W.; Fuchs, F. L. Org. Lett. 2000, 2, 2181.
- 16. Corey, E. J.; Ha, D.-C. Tetrahedron Lett. 1988, 29, 3171.
- Bartlett, P. A. In *Asymmetric Synthesis*; Morrison, J. D., Ed.; Academic Press: New York, 1984; Vol. 3, pp 411–453.
- Miura, K.; Okajima, S.; Hondo, T.; Nakagawa, T.; Takahashi, T.; Hosomi, A. J. Am. Chem. Soc. 2000, 122, 11348–11357.

- Ting, P. C.; Bartlett, P. A. J. Am. Chem. Soc. 1984, 106, 2668.
- Hartung, J.; Kneuer, R.; Laug, S.; Schmidt, P.; Spehar, K.; Svoboda, I.; Fuess, H. *Eur. J. Org. Chem.* 2003, 4033.
- 21. Coulombel, L.; Favier, I.; Dunach, E. Chem. Commun. 2005, 2286.
- Polovinka, M. P.; Korchagina, D. V.; Gatilov, Y. V.; Bagrianskaya, I. Y.; Barkhash, V. A.; Perutskii, V. B.; Ungur, N. D.; Vlad, P. F.; Shcherbukhin, V. V.; Zefirov, N. K. J. Org. Chem. 1994, 59, 1509.
- 23. Kishi, Y.; Fukuyama, T.; Vranesic, B.; Negri, D. P. *Tetrahedron Lett.* **1978**, *19*, 2741.
- 24. Chamberlin, A. R.; Fotcsh, C. H. J. Org. Chem. 1991, 56, 4141.
- 25. Chamberlin, A. R.; Mulholland, R. L. J. Org. Chem. 1988, 53, 1082.
- Kishi, Y.; Akasaka, K.; Fukuyama, T.; Schmid, G. J. Am. Chem. Soc. 1979, 101, 259.
- Semmelhack, M. F.; Kim, C.; Zhang, N.; Bodurow, C.; Sanner, M.; Dobler, W.; Meier, M. *Pure Appl. Chem.* 1990, 62, 2035.
- Hosokawa, T.; Hirata, M.; Murahashi, S.-I.; Sonoda, A. Tetrahedron Lett. 1976, 17, 1821.
- 29. Hosokawa, T.; Nakajima, F.; Iwasa, S.; Murahashi, S.-I. *Chem. Lett.* **1990**, 1387.
- 30. Gribble, G. W. Chem. Soc. Rev. 1999, 28, 335.
- 31. Lee, A. S.-Y.; Tsao, K.-W.; Chang, Y.-T.; Chu, S.-F. J. Chin. Chem. Soc. 2007, 54, 519.
- Clayden, J.; Greeves, N.; Warren, S. W.; Wothers, P. Organic Chemistry; Oxford University Press: Taipei, 2001, p 1040.
- 33. List, B. J. Am. Chem. Soc. 2002, 124, 5656.
- Bogevig, A.; Kumaragurubaran, N.; Juhl, K.; Zhuang, W.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2002, 41, 1790.
- Guo, H.-M.; Cun, L.-F.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z. Chem. Commun. 2005, 1450.
- Yamaguchi, M.; Shiraishi, T.; Hirama, M. J. Org. Chem. 1996, 61, 3520.